Suatucara sederhana untuk menggambarkan hubungan antar himpunan adalah menggunakan Diagram Venn Euler f2.2. Kaidah Matematika dalam Operasi Himpunan 1. Kaidah Idempoten 2. Kaidah Asosiatif AA=A AA=A (A B) C = A (B C) (A B) C = A (B C) 3. Kaidah Komutatif AB = BA A B =B A 4. Kaidah Distributif
0% found this document useful 0 votes1 views4 pagesOriginal Titlekaidah-matematika-dalam-operasi-himpunan[1]Copyright© © All Rights ReservedShare this documentDid you find this document useful?0% found this document useful 0 votes1 views4 pagesKaidah Matematika Dalam Operasi HimpunanOriginal Titlekaidah-matematika-dalam-operasi-himpunan[1]Jump to Page You are on page 1of 4 Gnbn ? Viswlyl Gpb. ? 04>>644;;Trlji. ? Tkr`ngcng Vynrinm Vkbkstkr 6BC. ? Bntkbnticn isgis N. TkghkrtingBntkbnticn isgis njnanm bkbpkanonri tkgtngh pkgkrnpng iabu bntkbnticn jnanb pkgykaksning `kr`nhi pkrbnsnanmng `isgis. Ckbnbpung ngnaisis jng `krpicir alhis jnanb bntkbnticn jnpnt bkb`ngtu bkbkfnmcng pkrslnang `isgis.  Tkgtighgyn Tkghktnmung Eughsi Bntkbnticn ugtuc KclglbiCkonjing-ckonjing kclglbi snaigh `krmu`ughng jng snaigh bkbpkghnrumi skpkrti ?  Mu`ughng pkgjnpntng jkghng pkghkaunrng ugtuc clgsubsi  Mu`ughng mnrhn jkghng pkrbigtnng `nrngh  Mu`ughng inyn Trlblsi jkghng Mnsia Tkgounang  Mu`ughng Igvkstnsi jkghng Tkgjnpntng gnsilgnaJkghng jkbicing citn jnpnt bkancucng ?  Tkru`nmng ‖ pkru`nmng yngh tkronji  Tkrnbnang ntnu Tkrcirnng  Bkghucur Tkghnrum  k`krnpn Flgtlm Tkghhugnng BntkbnticnTkghhugnng Jnanb Vtntistic Kclglbi ? - Bkbnmnbi rubus-rubus stntistic - Bkbnmnbi tklri pkghuoing mipltksis - Bkbnmnbi clgskp tklri mnrnpng - Bkbnmnbi ngnaisn rkhrksiTkghhugnng Aigknr Trlhrnbbigh ? - Bncsibub bigibub - Bntrics jng jktkrbigng > MIBT[GNG 0.>. Tkghkrting jng Tkgynoing MibpugngMIBT[GNG njnanm Vuntu jnetnr jnri skcubpuang l`ykc yngh bkbpugyni firi-firi tkrtkgtu. L`ykc yngh njn jnanb mibpugng jnpnt `krupn ? ianghng, Gnbnlrngh, Murue, Gnbn cltn, js`. L`ykc yngh njn jnanb mibpugng jisk`utKakbkg ntnu [gsur ntnu `insngyn jituais jnanb murue `ksnr, skpkrti? N, , F, J, ], Y….,Vkjnghcng nghhltn mibpugng jituais jnanb murue ckfia, skpkrti ? n, `, f, j, x,y….Fnrn bkguais mibpugng ? >.Jkghng fnrn bkgjnetnr nghhltn mibpugnggynFlgtlm ? N 2 { n, `, f, j } nrtigyn mibpugng N bkbpugyni nghhltnynitu n, `, f, jng fnrn bkgkgtucng suntu nturng pkrgyntnng Flgtlm ? Vuntu mibpugng yngh `krnghhltncng x skjkbicing rupnskmighhn x njnanm `ianghng hngoia >, 6, ;, 8, ………jst, jituais jkghng ? 2 { x x `ianghng hngoia }T 2 { x x bnmnsiswn pkgkribn `knsiswn }Vuntu l`ykc yngh bkrupncng nghhltn mibpugng jituais jkghngx Ç . Vuntu l`ykc yngh `ucng bkrupncng nghhltn mibpugng jituaisjkghng x Ì Mibpugng N jicntncng snbn jkghng mibpugng , oicn ckjungynbkbpugyni nghhltn yngh snbn, bncn ncng jituais N 2 Jnpnt tkronji `nmwn suntu mibpugng tijnc bkbpugyni nghhltnsnbn skcnai. Mibpugng tkrsk`ut jignbncng mibpugng clslgh ntnumibpugng gla, ji`kri anb`ngh 2 Å ntnu 2 { }. Mibpugng clslghbkrupncng mibpugng `nhing jnri sktinp mibpugng. Flgtlm ? C 2 { 6 }mibpugng igi mngyn bkbiaici sntu nghhltn ynitu nghcn 6. Mibpugng `nhing yngh jibiaici lakm mibpugng C njnanm skbun mibpugng yngh `krnghhltncng nghcn 6 jng skbun mibpugng clslgh. 0 Bisnacng mibpugng ^ 2 { n, ` }, bncn mibpugng `nhinggynnjnanm ? N 2 { n }, 2 { ` }, F 2 { n, ` }, jng J 2 { } onji oubanmmibpugng `nhing yngh jibiaici lakm mibpugng ^ 2 { n, ` } njn mibpugng. [gtuc bkghmitugh oubanm mibpugng `nhing yngh jibiaici lakmsuntu mibpugng yngh bkbiaici g nghhltn jnpnt jirubuscng ? 0 g Lpkrnsi MibpugngAnb`ngh-anb`ngh jnanb Zklri Mibpugng jng nrtigyn GlAnb`nghNrtiFlgtlm Tkghhugnng>. \ N [ ÝNghhltnkakbkgtmibpugng `nhingsu`skthn`ughngugilgirisngigtkrskftilgskaisim `ucng Nclbpakbkgmibpugng ugivkrsnamibpugng clslgh x Ç N ? l`ykc x njnanm nghhltn jnri mibpugng N N Á ? N njnanm mibpugng `nhing jnri N Í ? hn`ughng ngtnrn N jng N È ? irisng ngtnrn N jng N - ? skaisim ngtnrn mibp N jicurnghi mibp N 2 `ianghng plsitie N 2 `ianghng gkhntie Vkaurum n`onj jnri n snbpni zVkaurum pkgjujuc ji juginVuntu fnrn skjkrmngn ugtuc bkghhnb`nrcng mu`ughng ngtnr mibpugng njnanm bkghhugncng Jinhrnb Ukgg ‖ Kuakr Cnijnm Bntkbnticn jnanb Lpkrnsi Mibpugng 6 Reward Your CuriosityEverything you want to Anywhere. Any Commitment. Cancel anytime.
Sifatketertutupan pada operasi himpunan mempunyai makna bahwa hasil dari pengoperasian dua atau lebih himpunan menghasilkan satu penyelesaian berupa himpunan. B. Sifat Komutatif Sifat komutatif pada operasi himpunan hanya berlaku pada operasi irisan dan gabungan, yaitu A ∩ B = B ∩ A dan A ∪ B = B ∪ A. TeoriPeluang dan Teori Himpunan. Added 04.48, Standar Kompetensi Teori Peluang terdiri dari dua (2) Kompetensi Dasar. Pada penyajian dalam buku ini, setiap Kompetensi Dasar memuat Tujuan, Uraian materi, Rangkuman dan Latihan. Kompetensi Dasar dalam Standar Kompetensi ini adalah Kaidah Pencacahan, Permutasi dan Kombinasi, dan Peluang Suatu Operasihimpunan 1. Gabungan dua himpunan Operasi himpunan pertama yang akan kita bahas disini adalah gabungan. Gabungan dari dua himpunan A dan B adalah himpunan yang terdiri dari semua anggota himpunan A dan himpunan B, dimana anggota yang sama hanya ditulis satu kali. A gabungan B ditulis A ∪ B = {x|x ϵ A atau x ϵ B} Contoh: A = {1, 2, 3, 4, 5}
Sekolah maupun Kuliah tidak mengajarkan apa yang harus kita pikirkan dalam hidup ini. Mereka mengajarkan kita cara berpikir logis, analitis dan praktis." - Azis White -
Himpunanadalah suatu kumpulan/ koleksi dari objek-objek sebarang. Cara pengumpulan obyek-obyek itu biasanya berdasarkan sifat/keadaan mereka yang sama, ataupun berdasarkan suatu aturan tertentu / yang di tentukan. Contoh : • Himpunan yang terdiri dari mahasiswa-mahasiswa Jakarta • Himpunan dari senua bilangan asli yang lebih besar dari 9 • Himpunan yang terdiri dari ayam, bebek dan sapi. Te

HIMPUNANMATEMATIKA EKONOMI Pengertian Himpunan Penyajian Himpunan Himpunan Universal dan Himpunan Kosong Operasi Himpunan Kaidah Matematika dalam Operasi. - ppt download Himpunan Kosong, Semesta, Bagian (Sejati), Operasi + Contoh Soal Gambarkan diagram venn yang menunjukkan himpunan universal U serta himpunan-himpunan bagia

.
  • om5bsn5yjy.pages.dev/122
  • om5bsn5yjy.pages.dev/214
  • om5bsn5yjy.pages.dev/309
  • om5bsn5yjy.pages.dev/104
  • om5bsn5yjy.pages.dev/32
  • om5bsn5yjy.pages.dev/154
  • om5bsn5yjy.pages.dev/373
  • om5bsn5yjy.pages.dev/147
  • om5bsn5yjy.pages.dev/334
  • kaidah matematika dalam operasi himpunan